References
●Aghdam, M. A., Sharifi, A., & Pedram, M. M. (2019). Diagnosis of autism spectrum disorders in young
children based on resting-state functional magnetic resonance imaging data using Convolutional Neural
Networks. Journal of Digital Imaging, 32(6), 899–918. https://doi.org/10.1007/s10278-019-00196-1
●Dekhil, O., Hajjdiab, H., Shalaby, A., Ali, M. T., Ayinde, B., Switala, A., Elshamekh, A., Ghazal, M., Keynton,
R., Barnes, G., & El-Baz, A. (2018). Using resting state functional MRI to build a personalized autism
diagnosis system. PLOS ONE, 13(10). https://doi.org/10.1371/journal.pone.0206351
●Mellema, C. J., Nguyen, K. P., Treacher, A., & Montillo, A. (2022). Reproducible neuroimaging features for
diagnosis of autism spectrum disorder with machine learning. Scientific Reports, 12(1).
https://doi.org/10.1038/s41598-022-06459-2
●Reiter, M. A., Jahedi, A., Fredo, A. R., Fishman, I., Bailey, B., & Müller, R.-A. (2020). Performance of
machine learning classification models of autism using resting-state fmri is contingent on sample
heterogeneity. Neural Computing and Applications, 33(8), 3299–3310. https://doi.org/10.1007/s00521-020-
05193-y